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INFLUENCE OF VIBRATIONAL RELAXATION ON THE PULSATION

ACTIVITY IN FLOWS OF AN EXCITED DIATOMIC GAS

UDC 532.5:532.517.4Yu. N. Grigor’ev,1 I. V. Ershov,2

and E. E. Ershova2

The influence of vibrational relaxation on the nonlinear evolution of a large vortex structure in a
shear flow of a highly nonequilibrium diatomic gas is studied. Calculations are performed using
the equations of two-temperature gas dynamics for a viscous heat-conducting gas. Relaxation of the
temperature of vibrational levels of gas molecules to equilibrium is described by the Landau–Teller
equation. The contribution of the relaxation of rotational levels is taken into account by the bulk
viscosity in the stress tensor. It is shown that in the presence of only the relaxation process with no
viscous dissipation, the damping of the kinetic energy of perturbations and Reynolds stresses increases
by up to 10% compared to the case of thermal equilibrium. For high (actually attainable) degrees of
excitation of the vibrational mode, moderate dynamic and bulk viscosities, and a typical relaxation
time comparable to flow time, the relative effect of perturbation damping reaches 15%.
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Introduction. The influence of moderate thermal nonequilibrium of internal degrees of freedom on the
nonlinear evolution of a large vortex structure in a shear flow of a molecular gas was studied in [1]. In this case,
the energy distribution among dynamic modes was characterized by a unified temperature and the model flow was
calculated using the complete Navier–Stokes equations for a compressed heat-conducting gas, in which thermal
nonequilibrium was taken into account by the bulk viscosity in the divergent part of the stress tensor. According
to the calculation results, as the bulk viscosity increases in the range of its real values, the mean rate of damping
of the perturbation energy and the Reynolds stress modulus increases by approximately 10% compared to the case
where the bulk viscosity is eliminated, for example, by using the Stokes relation [2]. The chosen structure and
model flow parameters allow this result to be regarded as pulsation damping in a laminar–turbulent transition or
in a developed turbulent flow. This can lead to an increase in the transition Reynolds number in the first case and
to a decrease in turbulent resistance in the second case. In this connection, it is of interest to further examined the
effect obtained. In the present paper, the case of a greater departure from equilibrium with excitation of the lower
vibrational levels of molecules is examined invoking the vortex perturbation model used in [1]. Such nonequilibrium
can be produced in a natural way, for example, during gas expansion in a nozzle, or by an artificial excitation, in
particular, by moderate laser pumping.

1. Physical Model. The choice of a method to describe nonequilibrium over internal degrees of freedom
of molecules depends on the relations among the mean free time of molecules τtt, the relaxation times of rotational
modes τrt and vibrational modes τvt, and the characteristic flow time tf . If the gas flow is generally considered in a
hydrodynamic approximation, two alternative models of vibrational relaxation corresponding to the microscopic and
macroscopic approaches are possible [2, 3]. The microscopic approach uses the equations of level kinetics describing
the time evolution of the populations (occupation numbers) of vibrational levels of molecules. Since in the present
paper, we study the fundamental possibility of the damping effect of relaxation, it is expedient to use a reduced
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description of the process at the macroscopic level. For this, we confine ourselves to the best-studied diatomic gases,
whose molecules have only one vibrational mode.

Let us consider the widely occurring case of aerodynamics where the characteristic times satisfy the conditions
τtt 6 τrt � τvv � τvt ∼ tf [4–6]. Here τvt is the characteristic time of exchange of vibrational quanta between
molecules during which a quasiequilibrium distribution with a vibrational temperature different from the flow
temperature is established in the subsystem of vibrational levels. It can be assumed in this case that at times
of the order of the flow time tf , the translational and rotational degrees of freedom are in equilibrium and are
characterized by a static flow temperature.

An adequate physical model for such flows is two-temperature gas dynamics, in which the contribution of
the rotational motion of molecules is taken into account by the bulk viscosity µb in the stress tensor and the energy
exchange between the vibrational mode and quasiequilibrium degrees of freedom is described by the relaxation
Landau–Teller equation [3, 4]. In the spatially homogeneous case, this equation has the characteristic form

dTvib

dt
=

T − Tvib

τvt
,

where T is the equilibrium gas temperature and Tvib is the vibrational temperature. The equation describes the
asymptotic process of approach of the vibrational mode to equilibrium in an average sense.

Similar relaxation equations for vibrational modes were derived by many authors using various kinetic
approaches: the equations of level kinetics for a harmonic oscillator model [2, 3], the Ulenbeck–Wang-Chang kinetic
equation using the generalized Chapman–Enskog method [5], the Ulenbeck–Wang-Chang kinetic equation using
the Grad moment method [6]. Each of these theoretical approaches have limitations but in practice, the range of
applicability of the equations is extended by using experimental data on relaxation times. This makes it possible to
employ the model of two-temperature (multitemperature) gas dynamics beyond theoretical limitations in numerous
calculations of hypersonic flows and discharges, shock-wave processes, and the internal aerodynamics of jet engines
and lasers (see [2, 3, 5, 7] and the references therein).

A real physical factor that can force one to pass from the Landau–Teller equation to the microscopic model of
level kinetics is the development of anharmonicity of the vibrational mode for a high degree of its excitation. In this
connection, it is necessary to specify the ranges of physical parameters for calculations using the two-temperature
model.

1.1. Degree of Excitation and Relaxation Times of Vibrational Modes. As a crude estimate [7], it is generally
agreed that the Landau–Teller equations give satisfactory results up to the temperature T ∼ Θ = hν/k, where Θ is
the characteristic temperature (the energy of the main vibrational quantum in the absolute scale) above which
anharmonicity effects begin to manifest themselves. For diatomic gases, such as nitrogen, oxygen, and carbon
monoxide, it is high enough and takes values ΘN2 = 3400 K, ΘO2 = 2300 K, and ΘCO = 3100 K [7], respectively.
Although the absolute values of gas temperatures do not appear in the subsequent calculations, for definiteness, we
assume T 6 2000 K for all versions of initial data. We note that at this temperature, the degree of dissociation in
these gases does not exceed fractions of percent.

It is generally agreed that for simple diatomic molecules, anharmonicity always implies excitation of a large
number of vibrational levels. The degree of excitation of the vibrational mode is estimated by the ratio

ξ = (Tvib − T )/T.

In our case, we should confine ourselves to the level of excitation for which the anharmonicity of vibrations leading
to a marked molecular dissociation can be ignored. Beforehand, it is necessary to estimate the possible range of
initial values of the parameter ξ attainable by a particular method.

For a rapid nozzle gas expansion or an underexpanded jet discharge, it can be approximately assumed that
the vibrational temperature is frozen at the retardation temperature. In this case, we obtain the estimate

ξ = (γ − 1)M2/2,

where M is the flow Mach number and γ is the adiabatic exponent. From this, for diatomic gases it follows that for
Mach numbers M = 0.1–5, the degree of excitation of the vibrational mode of molecules is in the range ξ ≈ 0–5. This
estimate is supported by detailed calculations [4] using multitemperature gas dynamics, where for air at M = 4.5
and static temperature T = 216 K, the value ξ ≈ 3.82 is obtained.

The possibility of optical pumping of the vibrational mode using a laser of an appropriate wavelength is of
interest. In this case, the degree of excitation ξ is generally determined by the radiation power and wavelength
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and by the optical properties of the gas. Experimental data (see [3, 8–10]) show that at a normal temperature
and pressure and heat flux radiation wavelengths of 20 to 200 nm, the degree of excitation of the vibrational mode
of molecules is in the range ξ ≈ 4.8–10.2 for N2, ξ ≈ 4.3–10 for O2, and ξ ≈ 6.2–9.4 for CO. Thus, in all cases,
the degree of molecular dissociation does not exceed 1%. In papers devoted to anharmonicity effects (see the
references in [3, 7] and, e.g., [11]), the nonequilibrium criterion for the vibrational mode is the ratio ξ1 = T1/T ,
where T1 = Θ/ ln (x0/x1) is a conditional quantity called the “temperature” of the first vibrational level and x0 and
x1 are the populations of the zero and first levels. According to the calculations of [11], substantial development
of anharmonicity, in particular, in heat capacities and transfer coefficients, begins with ξ1 > 4 and is observed to
ξ1 ≈ 10 at gas temperatures T ≈ 1000 K, after which it is necessary to allow for dissociation. At the same time, the
ratio ξ includes the Tvib, which has the meaning of the vibrational energy averaged over all levels. This implies that
Tvib > T1 or even Tvib � T1, depending on excitation. Thus, ξ > ξ1, and for optical pumping of the vibrational
energy levels of diatomic gases, it is possible to ignore anharmonicity if the degree of excitation is limited by the
range ξ ≈ 4–5.

The possible times of vibrational relaxation τvt were estimated by the semiempirical dependence

ln (pτvt) = Cm1/2
eq Θ4/3(T−1/3 − 0.015m1/4

eq )− 18.420,

which generalizes numerous experimental data for diatomic gases in the temperature range T = 3 · 102–104 K.
Here τvt is in seconds, the gas pressure p in atmospheres, the gas temperature T and the characteristic vibrational
temperature Θ in Kelvin, and the normalized mass of molecules during collisions meq in atomic units. The values of
the characteristic temperature Θ were given above. According to the data of [12], the constant C has the following
values: CN2 = 1.15 · 10−3, CO2 = 1.10 · 10−3, and CCO = 1.05 · 10−3. Calculations for these gases at a pressure
p = 1 atm and gas temperatures T of 300 to 1000 K show that the vibrational-relaxation times are in the range
τvt ≈ 1–10−4 sec and decrease with increases in gas temperature.

It should be noted that the above dependence approximates experimental data by straight lines in the so-
called Landau–Teller coordinates [ln (pτvt), T−1/3] [3], which indirectly confirms the possibility of using them in
relaxation equations.

Losev [3] introduced a phenomenological correction to the relaxation time that permits extending the range
of applicability of the Landau–Teller equation to take into account the anharmonicity of vibrations. The relaxation
time is given by

τa = τvt

[1− γ exp (−Θ/Tvib)
1− exp (−Θ/Tvib)

]2

.

It is obvious that the thus corrected relaxation time depends not only on the gas temperature but also on the
vibrational temperature Tvib. It is of interest to estimate to the vibrational temperatures of the modeled gases up
to which this correction can be used and its value in the range of calculated parameters.

An estimate the range of applicability for Tvib follows [3] from the obvious inequality 1−γ exp (−Θ/Tvib) > 0,
whence Tvib < Θ/ ln γ. For N2, O2, and CO molecules, we have the approximate expression ln γ ' 1.87Θ2/3T−1/3xe,
where xe = Θ/(4D) is the anharmonicity parameter and D is the dissociation energy in Kelvin. Setting the
mean values of Θ ' 2500 K and D ' 105 K for the modeled gases at T ' 2000 K, we find that the correction
is applicable in the range Tvib < 1.5 · 104 K. In this case, the minimum degree of excitation is estimated as
ξ < (1.5 · 104− 2000)/2000 = 6.5. For the same mean parameter values and Θ ' Tvib, the anharmonicity correction
is approximately equal to [1− γ exp (−Θ/Tvib)

1− exp (−Θ/Tvib)

]2

'
[1− 1.18 e−1

1− e−1

]2

' 0.82.

It can be assumed that this correction is in the range of spread of experimental data [12].
1.2.Transfer Coefficients and Flow Parameters. In the momentum and energy equations of two-temperature

gas dynamics, the stress tensor P and the heat flux vector q have the form [4, 6]

P = pI − µ(∇u + (∇u)∗ − (2/3)I div u)− µbI div u,

q = −λ∇T − λvib∇Tvib, λ = λtr + λrot, p = ρRT,

where u = (u, v) is the velocity; I is a unit second-rank tensor; the asterisk denotes transposition; µ and µb are
dynamic and bulk viscosities; λtr, λrot, and λvib are the thermal conductivities due to translational, rotational,
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and vibrational motions, and R is the gas constant. The bulk viscosity µb in the stress tensor P and the thermal
conductivities λrot in the heat flux vector q take into account the contributions of rotational degrees of freedom,
and the thermal conductivity λvib takes into account the contribution of the vibrational mode.

As in [1], the ratio of bulk viscosity to shear viscosity was estimated in the range α1 = µb/µ ≈ 0–2. The
thermal conductivities due to the different types of degree of freedom were determined from the following formulas
taking into account the modified Eucken corrections (see [4]):

λtr = 5γtrµcv/2, λrot = 6γrotµcv/5, λvib = 6γvibµcv/5.

Here γtr, γrot, and γvib are the fractions of internal energy contained in the translational, rotational, and vibrational
degree of freedom, respectively and cv is the total specific heat in constant volume. For a diatomic gas at T 6 2000 K,
for simplicity, we set γrot = γvib ≈ 2/7 and γtr ≈ 3/7. The thermal conductivity ratio used in the calculations
was constant α2 = λvib/λ ≈ 0.2424, where λ = λtr + λrot. The adopted approximation is also justified by the fact
that the main objective of the calculations was to elucidate the damping effect against the background of a purely
relaxation process, in which all dissipative coefficients vanished: µ = µb = λtr = λrot = λvib = 0.

The model flow was considered in a square with side l on the plane (x, y). The carrier flow had an antisym-
metric linear velocity profile u(y) = 2U0y/l. The initial vortex perturbation was specified as a Rankine vortex of
radius R0 with constant vorticity Ω0 centered in the calculated region. On the external boundaries of the region
parallel to the carrier flow, constants temperature T0 and density ρ0 were specified.

2. Formulation of the Problem and Method of Solution. 2.1. Initial-Boundary-Value Problem.
The structure evolution in the model mesh was described by the complete system of equations of two-temperature
gas dynamics for a viscous heat-conducting gas. The equations were normalized by the following characteristic
quantities: the initial diameter of the structure 2R0 the velocity modulus U0, the density ρ0 and temperature T0

on the upper and lower boundaries of the model mesh, time t0 = 2R0/U0, and the pressure p0 = ρ0U
2
0 .

In the dimensionless variables, the system of equations is written as
∂ρ

∂t
+ div ρu = 0,

ρ
(∂u

∂t
+ u · ∇u

)
= −∇p +

1
Re

∆u +
1

Re

(
α1 +

1
3

)
∇ div u,

ρ
(∂T

∂t
+ u · ∇T

)
= (γ − 1)M2

0

(∂p

∂t
+ u · ∇p

)
+

1
Re Pr

∆T (1)

+
(γ − 1)M2

0

2 Re
(∇u + (∇u)∗)2 + (γ − 1)

(
α1 −

2
3

)M2
0

Re
(div u)2 +

γvρ(Tvib − T )
τvt

,

γvρ
(∂Tvib

∂t
+ u · ∇Tvib

)
=

α2

Re Pr
∆Tvib +

γvρ(T − Tvib)
τvt

, γM2
0p = ρT.

In system (1), the equation for the vibrational temperature Tvib is a relaxation Landau–Teller equation written in
Euler form [4, 6]. The first term on the right side of this equation describes the local flux of vibrational energy due
to molecular transfer, and the second term describes the vibrational energy relaxation to equilibrium.

On the mesh boundaries at all times, the following conditions were specified:
for x = ±χ/2 and y ∈ [−χ/2;χ/2],

u(χ/2, y, t) = u(−χ/2, y, t), v(χ/2, y, t) = −v(−χ/2, y, t),

ρ(χ/2, y, t) = ρ(−χ/2, y, t), p(χ/2, y, t) = p(−χ/2, y, t), (2)

Tvib(χ/2, y, t) = Tvib(−χ/2, y, t);

for y = ±χ/2 and x ∈ [−χ/2;χ/2],

u(x, χ/2, t) = −u(x,−χ/2, t), v(x, χ/2, t) = v(x,−χ/2, t),

ρ(x, χ/2, t) = ρ(x,−χ/2, t), p(x, χ/2, t) = p(x,−χ/2, t), (3)

Tvib(x, χ/2, t) = Tvib(x,−χ/2, t).
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In the calculation domain, the carrier flow region is specified as the exact steady-state solution of system
(1) for the case of thermal equilibrium over the degrees of freedom with boundary conditions (2) and (3). In the
dimensionless variables, the flow characteristics have the form

T0(y) = Tvib, 0(y) = 1 + (γ − 1)M2
0Pr (1− 4y2/χ2)/2,

U(y) = 2y/χ, V = 0, ρ0(y) = T−1
0 (y), P0(x, y) = 1/(γM2

0).
(4)

The initial conditions for the velocity field and thermodynamic quantities were specified as

u(0, x, y) =
{

U(y) + βy/(2r2), r > 1/2,

U(y) + 2βy, r 6 1/2,

v(0, x, y) =
{
−βx/(2r2), r > 1/2,

−2βx, r 6 1/2,

(5)

T (0, x, y) = T0(y), Tvib(0, x, y) = (1 + ξ)T0(y), ρ(0, x, y) = ρ0(y), r =
√

x2 + y2.

The calculations were performed for the following parameter values: Mach number M0 = U0/
√

γRT0 = 0.5,
Reynolds number Re = 2U0R0ρ0/µ = 100, Prandtl number Pr = µcp/λ = 0.74, relative intensity of vortex
perturbation β = Ω0R0/(2U0) = 0.2, intermittency parameter χ = l/(2R0) = 3, γ = 1.4, α1 = 0–2, α2 = 0.2424,
ξ = 0–5, τvt = 0–5.

2.2. Difference Schemes. In the numerical calculations, system (1) was approximated by a weight finite-
difference scheme with splitting in physical processes and space coordinates similar to that used in [1]. The scheme
is written in operator form as

xn+1 − xn

∆t
+ Lh[δxn+1 + (1− δ)xn] = Gn

h, (6)

where xn = (ρn
ij , u

n
ij , v

n
ij , T

n
ij , T

n
vib,ij) is a grid vector function of the solution in the nth time layer, h and ∆t are

the spatial grid step and the step in time, respectively, and δ is the weight parameter. The form of the operator
Lh is described in [1] and the right side vector Gn

h consists of second-order approximations symmetric over each
coordinate with mixed derivatives from the momentum equations, the terms of the dissipative function from the
energy equation, and the source terms from the relaxation equation and energy equation. In the quasiequilibrium
case, where system (1) becomes the complete system of Navier–Stokes equations, scheme (6) coincides with the
scheme proposed in [13] (see also [1]). An analysis shows that the appearance of an additional equation and a
source term in the energy equation does not affect the computations. Thus, scheme (6) on a regular grid with a
step h on both coordinates approximates system (1) with order O(∆t + h2) and is absolutely stable for a weight
parameter δ > 1/2.

To estimate the contribution of the relaxation process, the model problem in question was also solved in
an approximation of relaxation gas dynamics, in which the momentum and energy equations and the relaxation
equation of system (1) do not contain dissipative terms (µ = µb = 0 and λtr = λrot = λvib = 0). In this case,
the system of equations was approximated by a weight finite-difference scheme with splitting in physical processes
and space coordinates. It was constructed on the basis of a numerical scheme for the equations of gas dynamics
from [13]. In abstract operator form, the scheme is also written in the form (6). However, in this scheme, the
operator Lh is composed of symmetric second-order approximations of the first derivatives with respect to each
space coordinate, and the right-side vector Gn

h consists of the relaxation terms from the energy equation and the
relaxation equation. The approximation order and the stability of the thus obtained scheme are similar to the
characteristics of scheme (6).

In the computation domain in both cases, the grid contained 31× 31 = 961 nodes with a step h = 0.1, and
the step in time was ∆t = 0.01. The evolution of the perturbation was traced up to its entry to the mesh boundary,
which required up to 600 time steps, after which the calculation was terminated.

To improve the numerical schemes, we performed test calculations similar to those carried out in [1]. As was
shown, the maximum calculation errors do not exceed 5 · 10−3.

3. Calculation Results and Discussion. In the calculations, we examined the energy and momentum
transfer between the imposed perturbation and the carrier flow. The pulsation flow characteristics Φ′ were defined
by

Φ′ = Φ− Φ0,
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Fig. 1. Kinetic energy of perturbation versus time (Re = 100, M0 = 0.5, Pr = 0.74, β = 0.2, χ = 3, α1 = 0–2, ξ = 0–5,
and τvt = 0–5): (a) µ = µb = 0, λ = λvib = 0, τvt = 3, and ξ = 0.5 (1), 1 (2), 2 (3), 3 (4), 4 (5), and 5 (6); (b) α1 = 0.5,
ξ = 2, τvt = 0.5–5, and τvt = 0.5 (1), 1 (2), 2 (3), 3 (4), 4 (5), and 5 (6).

where Φ are instantaneous values of the flow characteristics obtained by numerical solution of the model problem
and Φ0 are the characteristics of the equilibrium steady-state carrier flow (4). To estimate the effect of relaxation
of excited vibrational degrees of freedom and bulk viscosity on the pulsation characteristics of the model flow, we
examined the time evolution of the Reynolds stress modulus

σxy(t) =

χ/2∫
−χ/2

χ/2∫
−χ/2

|ρu′v′| dx dy

and the kinetic energy of the perturbations

E(t) =
1
2

χ/2∫
−χ/2

χ/2∫
−χ/2

ρu′2 dx dy.

The corresponding integrals were evaluated using the rectangular formulas on a regular grid with a step h = 0.1.
In Fig. 1a, the plots of E(t) demonstrate the effect of the purely relaxation process versus the degree

of excitation of the vibrational mode ξ for the case where in Eqs. (1), the dissipative coefficients are equal to
zero (µ = µb = 0 and λtr = λrot = λvib = 0) and the vibrational relaxation time τvt = 3 is comparable to the
characteristic time of flow evolution. The course of the curves shows that as the value of ξ increases, the dependences
E(t) decrease more rapidly. The effect of the variation in the vibrational relaxation time τvt on the damping of the
perturbation energy E(t) is illustrated in Fig. 1b. The parameter τvt varies within one order of magnitude. The
values of the parameters α1 and ξ, which also influence dissipation, are moderate. It is obvious that with decrease
in the relaxation time, the pulsations are damped more rapidly, although not in a direct proportion to the variation
of τvt. The dependences σxy(t) for various ξ and τvt behave same as the curves presented in the figure. As the
degree of excitation of the vibrational energy levels ξ increases, the Reynolds stresses damp more rapidly, and a
decrease in the vibrational relaxation time τvt leads to an increase in the damping rate σxy(t).

The effect of the vibrational relaxation process on the mean pulsation characteristics was estimated quanti-
tatively by calculating their relative changes:

∆ξ
F = |〈F (ξ, τvt)〉 − 〈F (0, τvt)〉|/〈F (0, τvt)〉, τvt = const,

∆τvt

F = |〈F (ξ, τvt)〉 − 〈F (ξ, 0)〉|/〈F (ξ, 0)〉, ξ = const.

The averaging in time was defined by

〈F 〉 =
1
θ

θ∫
0

F (t) dt.
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For the regime shown in Fig. 1, in an approximation of relaxation gas dynamics with µ = µb = 0,
λtr = λrot = λvib = 0, τvt = 3, these characteristics for the kinetic energy 〈E〉 and the Reynolds stress modulus
〈σxy〉 for ξ = 0–5 vary in the range ∆ξ

F = 0.043–0.091, and for τvt = 5, they vary in the range ∆ξ
F = 0.017–0.056.

For vibrational relaxation times τvt = 0–5 and fixed values α1 = 0.5 and ξ = 2, the relative variations of the values
of 〈E(ξ, τvt)〉 and 〈σxy(ξ, τvt)〉 are in the range from ∆τvt

F = 0.103 for τvt = 0.5 to ∆τvt

F = 0.01 for τvt = 5. In the
case where the bulk viscosity reached the maximum value adopted in calculations (see also [1]) and corresponding
to α1 = 2, for ξ = 2, we obtained ∆τvt

E = 0.158 for τvt = 3 and ∆τvt

E = 0.106 for τvt = 5.
Conclusions. The effect of the relaxation of vibrational levels of molecules on the nonlinear interaction

of a vortex perturbation of finite amplitude with a carrier shear flow of an excited diatomic gas was investigated
numerically. The ranges of the degree of excitation and relaxation time of the vibrational mode and bulk viscosity
corresponded to their real values for nitrogen, oxygen, and carbon monoxide. The results of the numerical modeling
suggest that the nonequilibrium of the vibrational mode of the gas molecules has a marked damping effect on the
perturbation dynamics at the excitation levels attainable in nozzle flows, underexpanded jets or moderate laser
pumping.
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